DuPont Packaging & Industrial Polymers ## **Bynel® resins Product Data Sheet** ### **Description** **Product Description** BYNEL® Series 4100 series resins are anhydride-modified, linear low-density polyethylene (LLDPE) resins. All BYNEL Series 4100 series resins are available in pellet form for use in conventional extrusion and coextrusion equipment designed to process polyethylene resins. #### Restrictions Material Status · Commercial: Active ### **Typical Characteristics** Characteristics / Benefits Vicat Softening Point () Physical properties of BYNEL Series 4100 resins are typical of linear low-density polyethylene resins with similar density and melt index values. Use of these adhesive resins in coextruded PE/barrier structures offers improved thermal resistance over that of ethylene vinyl acetate-based adhesive resins. **Applications** BYNEL 4100 series resins adhere to a variety of materials. They are most often used to adhere to EVOH, polyamide, PE and ethylene copolymers. Series 4100 resins can be used in coextrusion processes including: - o blown film - o cast film/sheet - o blow molding - o melt and solid phase thermoforming - o sheet and tubing LLDPE resins are known for their temperature resistance, clarity and toughness. These physical properties make the 4100 series resins work well in applications such **ASTM D1525** - o boil-in-bag structures - o blow molded containers in which drop strength is important - o bag-in-box films - o film where LLDPE is the heat seal layer. #### **Typical Properties Nominal Values Physical** Test Method(s) ASTM D792 0.91 g/cm³ Density () ISO 1183 Melt Flow Rate (190℃/2.16kg) 1.7 g/10 min **ASTM D1238** ISO 1133 Thermal **Nominal Values** Test Method(s) 119℃ (246℉) Melting Point (DSC) **ASTM D3418** ISO 3146 Freezing Point (DSC) 103℃ (217°F) **ASTM D3418** 84℃ (183°F) **ISO 306** #### Additional Adhesive Evaluation The performance of any adhesive resin should be evaluated within the context of the application. The adhesive is designed to bond materials that would not ordinarily adhere to each other. In most cases, peel strength is used as a measure of performance. Although this is a convenient test, peel strength is affected not only by adhesion, but also by peel angle, separation rate, temperature, and tensile and modulus properties of the materials, and often by the time elapsed since the formation of the bond. Post-treatment of the multi-layer structure, such as heat sealing, thermoforming or orientation can also affect peel strength. If peel strength is used as a measure of adhesive performance, it is imperative that peel strength be evaluated not only at the time of manufacture, but throughout the life of the product and under all the various conditions to which the structure will be exposed. Only then can the performance of the adhesive be related to peel strength. ### **Processing Information** #### General Maximum Processing Temperature 260℃ (500°F) **General Processing Information** The temperature profiles shown below are for initial evaluations of BYNEL adhesive resins in the 4100 series. These profiles are designed to provide adequate exposure time of the adhesive resin to elevated temperatures. Exposure to elevated temperatures activates the anhydride which improves the bonding capability of the adhesive resin. Regardless of the profile used, the adhesive resin should be exposed to temperatures above 210C (410F) for several minutes prior to contact with the other molten resins in coextrusion in order to ensure adequate performance of the adhesive resin In coextrusions with thermally sensitive resins such as EVOH or EVA, we suggest that the maximum melt temperature be limited to 235C (455F) to guard against overheating the EVOH or EVA. If adhesion results are adequate, we suggest evaluating even lower melt temperatures such as 210 - 220C (410 - 428F). For coextrusion with polyamides or other thermally stable resins, the melt temperature can be higher. We suggest a maximum melt temperature of 260C (500F). This should provide acceptable bond strengths and film quality under almost all coextrusion conditions. If adhesion results are adequate, melt temperatures can be lowered. While it is possible to extrude BYNEL 4100 series resins as high as 300 (572F), such high extrusion temperatures, particularly when coupled with long residence times, may result in some film imperfections. In certain streamlined extrusion operations, where residence times are short, it may be possible to use temperatures higher than 260C (500F). Variation of these suggested temperature profiles may be appropriate depending upon the screw configuration, potential extruder horsepower limitations, potential back pressure limitations, the need to match rheologies and/or the stability of the other resins in the coextrusion. Film quality will also depend upon the residence time of the adhesive resin in the system. Dead spots may result in localized overheating and should be avoided by ensuring the flow path for the adhesive is as streamlined as possible. We suggest using any standard polyolefin working screw when extruding BYNEL 4100 series resins. Excessively deep flights should be avoided as they might result in poor melting of the adhesive resin. It is also important to properly size the extruder for the output desired. Running large extruders at very low RPMs should be avoided. For producing monolayer adhesive films with BYNEL 4100 adhesive resins, extrusion conditions commonly used for converting linear low density polyethylene into films can be employed. If the coextrusion process is stopped for short periods of time, the screw in the adhesive extruder should be kept turning at a low RPM level. For a permanent shutdown, the BYNEL adhesion resin should be purged out using an available polyethylene resin run at the same extrusion temperature used during the extrusion process of the adhesive resin. Making frequent changes in screw speed during the shutdown process and subsequent start-up will help remove the previous material from the system more effectively. Sometimes upon start-up of the adhesive resin, excessive amounts of gel may be observed. This may be due to the natural ability of the adhesive resin to act as a purging compound. In this case, continued extrusion will eventually clear up the problem. | CoExtrusion w/EVOH Processing | Nominal Values | |--|--| | CoExtrusion w/EVOH Processing Information | Proposed Extruder Set Temperatures | | Feed Zone | 160℃ (320℉) | | Second Zone | 185℃ (365℉) | | Third Zone | 235℃ (455℉) | | Fourth Zone | 235℃ (455℉) | | Fifth Zone | 235℃ (455℉) | | Adapter Zone | 235℃ (455℉) | | Die Zone | 235℃ (455℉) | | CoExtrusion w/Nylon Processing | Nominal Values | | | | | CoExtrusion w/Nylon Processing
Information | Proposed Extruder Set Temperatures | | | Proposed Extruder Set Temperatures 160℃ (320年) | | Information | | | Information
Feed Zone | 160℃ (320℉) | | Information Feed Zone Second Zone | 160℃ (320℉)
185℃ (365℉) | | Information Feed Zone Second Zone Third Zone | 160°C (320°F)
185°C (365°F)
235°C (455°F) | | Information Feed Zone Second Zone Third Zone Fourth Zone | 160°C (320°F)
185°C (365°F)
235°C (455°F)
260°C (500°F) | #### **FDA Status Information** BYNEL 41E687 conforms with the Code of Federal Regulations, Title 21, Paragraph 175.105, covering the use of adhesive interlayers in composite packages for food use. This regulation describes adhesives that may be safely used as components of articles intended for use in packaging, transporting or holding food. This regulation requires that either (1) the adhesive is separated from the food by a functional barrier, or (2) the quantity of adhesive which contacts fatty or aqueous foods does not exceed the trace amounts at the seams or edges. Customers should satisfy themselves that the food contact material is serving as a functional barrier to the adhesive. ### **Regulatory Information** For information on regulatory compliance outside the U.S., consult your local DuPont representative. ### Safety & Handling As with any hot material, care should be taken to protect the hands and other exposed parts of the body when working with molten polymer. At temperatures above 300C (572F), these resins can evolve low concentrations of fumes. When resins are overheated, more extensive decomposition may occur. Because fumes produced during exposure to high temperatures may be combustible, exposure of overheated resin to atmospheric oxygen should be avoided if possible. Adequate local ventilation should be provided to remove the fumes from the work area. Disposal of scrap material presents no special problems, and may be accomplished by landfill or by incineration by a properly operated incinerator. Disposal should comply with local, state, and federal regulations. Resin pellets can be a slipping hazard. Loose pellets should be swept up promptly to prevent falls. For more detailed information on the safe handling and disposal of these resins, a Product Safety Bulletin and OSHA Material Safety Data Sheets can be obtained ### Read and Understand the Material Safety Data Sheet (MSDS) before using this product ### **Regional Centres** DuPont operates in more than 70 countries. For help finding a local representative, please contact one of the following regional customer contact centers: #### **Americas** DuPont Company, BMP26-2363 Lancaster Pike & Route 141 Wilmington, DE 19805 U.S.A. Telephone +1 302-774-1161 Toll-free (USA) 800-628-6208 Fax +1 302-999-4399 DuPont do Brasil, S.A. Alameda Itapecuru, 506 06454-080 Barueri, SP Brasil Telephone +55 11 4166 8122 Fax +55 11 4166 8720 #### **Asia Pacific** DuPont China Holding Co., Ltd. Shanghai Branch 399 Keyuan Road, Bldg. 11 Zhangjiang Hi-Tech Park Pudong New District, Shanghai P.R. China (Postcode: 201203) Telephone +86 21 3862 2888 Fax +86-21-3862-2889 ### **Europe / Middle East / Africa** DuPont de Nemours Int'1. S.A. 2,Chemin du Pavillon Box 50 CH-1218 Le Grand Saconnex Geneva, Switzerland Telephone +41 22 717 51 11 Fax +41 22 717 55 00 http://bynel.dupont.com The data listed here fall within the normal range of properties, but they should not be used to establish specification limits nor used alone as the basis of design. The DuPont Company assumes no obligations or liability for any advice furnished or for any results obtained with respect to this information. All such advice is given and accepted at the buyer's risk. The disclosure of information herein is not a licence to operate under, or a recommendation to infringe, any patent of DuPont or others. Since DuPont cannot anticipate all variations in actual end-use conditions, DuPont makes no warranties and assumes no liability in connection with any use of this information. CAUTION: Do not use DuPont materials in medical applications involving implantations in the human body or contact with internal body fluids or tissues unless the material has been provided from DuPont under a written contract that is consistent with DuPont policy regarding medicalk applications and expressly acknowledges the contemplated use. For further information, please contact your DuPont representative. You may also request a copy of DuPont POLICY Regarding Medical Applications H-50103-3 and DuPont CAUTION Regarding Medical Applications H-50102-3. Copyright © 2009 DuPont. The DuPont Oval Logo, DuPontTM, The miracles of scienceTM, and trademarks designated with "®" are registered trademarks or trademarks of E.I. du Pont de Nemours and Company or its affiliates. All rights reserved. This data sheet is effective as of 02/01/2010 10:00:03 AM and supersedes all previous versions.