DuPont Engineering Polymers ### **Typical Processing Conditions for DuPont Engineering Polymers** Start with DuPont ### Typical Processing Conditions for DuPont Engineering Polymers ### Injection Molding of Engineering Polymers The injection molding of thermoplastic resins is a well known and widely practiced science. But it must be performed properly if the optimum properties of the material are to be achieved. DuPont Polymers makes a number of engineering plastics representing a range of chemical types. Each has its own specific processing characteristics which must be considered and understood before successful molding operations can be accomplished. The information presented is intended to provide guidance in the molding and extruding of DuPont Engineering Polymers. Additional information can be found in the Molding Guide for each product. ### **Processing Conditions** The optimum processing conditions for a plastic are determined by the nature of the plastic. It is important that the recommended processing conditions be followed, subject to the experience of the molder. Molding conditions can affect the performance of the polymer, especially toughness, mold shrinkage, weld lines, post mold shrinkage and surface appearance of the molded part. ### **Sales Information** DuPont Engineering Polymers are manufactured in ten countries and sold throughout the world. Local sales and technical support personnel are available to serve you almost anywhere. For further information, please contact any of the regional offices on the back cover. #### Tables 1-5 **Tables 1–5** describe typical processing conditions for injection molding of Zytel® Nylon Resin, Minlon® Engineering Thermoplastic Resin, Glass Reinforced Zytel, Delrin® Acetal Resin, Hytrel® Engineering Thermoplastic Elastomer, Rynite® PET Thermoplastic Polyester Resin, Rynite PBT Thermoplastic Polyester Resin and Zenite™. ### Table 6 **Table 6** describes typical extrusion conditions for Zytel, Delrin, and Hytrel. Table 1 Zytel Nylon Resin | | | Resin Grade | Dehumidifying
Dryer Conditions | Melt (Stock) | |-----------------------|---|--|--|---------------------------------| | Resin | Code | Description | Time/Temp. | Temperature* | | 66 Nylon | 101
101L
101F
103HSL
103FHS
105 BK010A | General Purpose—Unmodified
General Purpose—Lubricated
General Purpose—Fast Cycle
Heat Stabilized—Lubricated
Fast Cycle—Heat Stabilized
Weather Resistant | Virgin resin is packaged dry in
moisture-proof boxes and bags.
Pre-drying should not be
necessary unless package is
damaged. | 280–305°C
(535–580°F) | | | 122L
132F
133L | Hydrolysis Resistant
Fast Cycle—Lightly Nucleated
Nucleated—Color Stabilized—Lubricated | It is important to keep resin dry
during molding. If residence time
in the hopper is over one hour, a
dehumidified hopper dryer is
recommended (80°C [175°F]). | | | Toughened
66 Nylon | 408
408HS
408L
450HSL BK | Impact Resistant Impact Resistant—Heat Stabilized Impact Resistant—Lubricated Intermediate Impact Resistance, Heat Stabilized and Lubricated | Regrind resin must be dried at 80°C (175°F). Time will depend on storage time, particle size and humidity. | 290–295°C
(550–560°F) | | | 3189
3189HSL | Impact Resistant
Heat Stabilized—Lubricated | The following are general guidelines: | | | Super Tough
Nylon | ST800L
ST800HSL
ST801
ST801HS
ST801W | Outstanding Impact Resistance—Lubricated
Heat Stabilized ST800L
Outstanding Impact Resistance—Lubricated
Heat Stabilized ST801
Weatherable, UV Resistant ST801 | Time in | 290–295°C
(550–560°F) | | | ST901L
ST901HSL | Amorphous Characteristics Amorphous Characteristics—Heat Stabilized | Nylon will discolor on drying. The
amount of color change depends
on temperature and time. | 275–300°C
(530–570°F) | | | ST811HS | Super Tough Nylon 6—Heat Stabilized | Consult Molding Manual on Zytel for more detailed information. | 225–290°C
(440–550°F) | | 612 Nylon | 151L
153HSL
157HSL BK010
158L | General Purpose—Lubricated
Heat Stabilized—Lubricated
Weather and Heat Resistant—Lubricated
High Viscosity and Tougher Than 151L—Lubricated | **Dew point - 18°C (<0°F) | 230–290°C
(450–550°F) | | Modified
Copolymer | 109L | Color Stabilized—Nucleated—Lubricated | | 255–290°C
(490–550°F) | | Transparent Nylon | 330 | General Purpose—Amorphous Characteristics | | 300–320°C
(570–610°F) | ^{*}The processing conditions presented here are representative of those typically used or preferred. Rounded numbers are shown for both English and SI units. See your sales representative to obtain maximum part quality on any specific job. Table 1 Zytel Nylon Resin | Resin | Reciprocating Screw Machine* | | | | | | | | |---|------------------------------|-------------------------|-------------------------|-------------------------|---------------------|---------------------|---|--| | Grade | | Cylinder | | tures | Fill | Screw | Back | Injection | | Code | Nozzle | Front | Center | Rear | Speed | Speed | Pressure | Pressure | | 101
101L
101F
103HSL
103FHS
105 BK010A
122L
132F
133L | 260–300°C (500–570°F) | 270°C
(520°F) | 275°C
(525°F) | 280°C (540°F) | Moderate
to Fast | Slow to
Moderate | Increasing back pressure increases the work done by the screw on the melt. This has the following advantages and disadvantages: Advantages • Increases melt | 34–138 MPa
(5,000–20,000 psi) | | 408
408HS
408L
450HSL BK
3189
3189HSL | 260–300°C (500–570°F) | 275°C
(525°F) | 280°C
(535°F) | 295°C (560°F) | Moderate | Slow to
Moderate | temperature and uniformity. Can be used to minimize unmelted particles. Improves color mixing when color concentrates are | 41–138 MPa
(6,000–20,000 psi) | | ST800L
ST800HSL
ST801
ST801HS
ST801W | 260–300°C (500–570°F) | 275°C
(525°F) | 280°C
(535°F) | 295°C
(560°F) | Moderate | Slow to
Moderate | used. Disadvantages Decreases output of screw. Increases drool (nozzle). | 41–138 MPa (6,000–20,000 psi) | | ST901L
ST901HSL | 265–305°C (510–580°F) | 280°C
(535°F) | 285°C
(545°F) | 300°C
(570°F) | Moderate
to Fast | Moderate | Reduces glass fiber
length in glass-
reinforced resins, | 69–138 MPa
(10,000–20,000 psi) | | ST811HS | 225°C
(440°F) | 225°C
(440°F) | 230°C (450°F) | 245°C (470°F) | Moderate | Slow to
Moderate | thus changing physical properties (strength/impact | 55–138 MPa (8,000–20,000 psi) | | 151L
153HSL
157HSL BK010
158L | 230°C
(450°F) | 225°C
(440°F) | 230°C (445°F) | 240°C (460°F) | Moderate
to Fast | Slow to
Moderate | resistance). Increases equipment wear with filled resins. Scrubs barrel (black | 34–138 MPa
(5,000–20,000 psi) | | 109L | 255°C
(490°F) | 250°C
(485°F) | 255°C (490°F) | 265°C (505°F) | Moderate | Slow to
Moderate | specks). Screw retraction time should be approximately | 41–138 MPa (6,000–20,000 psi) | | 330 | 275–295°C (530–560°F) | 290°C
(550°F) | 290°C
(555°F) | 280°C (535°F) | Moderate | Slow to
Moderate | 80% of the cool time for optimum molding. | 62–138 MPa
(9,000–20,000 psi) | ^{*}The processing conditions presented here are representative of those typically used or preferred. Rounded numbers are shown for both English and SI units. See your sales representative to obtain maximum part quality on any specific job. ### Table 1 Zytel Nylon Resin | Resin
Grade
Code | Mold Surface
Temperature* | Comments | |---|-------------------------------|--| | 101
101L
101F
103HSL
103FHS
105 BK010A
122L
132F
133L | 40–95°C
(100–200°F) | Molding wet nylon resin will show up as one or more of these: | | 408
408HS
408L
450HSL BK
3189
3189HSL | 40–95°C
(100–200°F) | ensuring that resin is dry using suck back, or using a reverse taper nozzle. If screw does not retract or retracts erratically, check rear zone temperature or heater band. Aluminum distearate may be added (20 g per 22.7 kg [50 lb] maximum) to aid in screw retraction. Too much lubricant may show up as surface splay and/or brittle parts. Also, moisture levels greater than 0.5% may cause erratic screw recovery. Check moisture and dry to less than
0.2%. | | ST800L
ST800HSL
ST801
ST801HS
ST801W | 40–95°C
(100–200°F) | Nylon parts will absorb moisture after molding, which can cause changes in physical properties (moisture increases impact resistance and elongation) and dimensions. If higher toughness (impact resistance) is required, toughened compositions should be considered. Nylon parts that have been degraded (as evidenced by brittleness or brown color) should not be reground and remolded. | | ST901L
ST901HSL | 40–80°C
(100–175°F) | Dehumidified drying ovens and vacuum drying are also suitable. Consult the Molding Manual on Zytel for additional details. | | ST811HS | 40–95°C
(100–200°F) | | | 151L
153HSL
157HSL BK010
158L | 40–95°C
(100–200°F) | | | 109L | 40–95°C
(100–200°F) | | | 330 | 65–95°C
(150–200°F) | | ^{*}The processing conditions presented here are representative of those typically used or preferred. Rounded numbers are shown for both English and SI units. See your sales representative to obtain maximum part quality on any specific job. Table 2 Flame Retarded Nylon, Minlon Engineering Thermoplastic Resin and Glass-Reinforced Zytel | | | Resin Grade | Dehumidifying Dryer Conditions | Melt (Stock) | |---------------------------------------|--|---|--|---------------------------------| | Resin | Code | Description | Time/Temp. | Temperature* | | Flame Retarded I | Nylon | | | | | Zytel | FR10 | General Purpose—Unreinforced | Virgin resin is packaged dry in
moisture-proof boxes and bags. Pre-drying should not be | 250–275°C
(480–525°F) | | | FR50 | 25% Glass-Reinforced | necessary unless package is
damaged. | 290–305°C
(550–580°F) | | Minlon | FR60 | Mineral-Reinforced | It is important to keep resin dry
during molding. If residence time
in the hopper is over one hour, a
dehumidified hopper dryer is | 295–305°C
(560–580°F) | | Minlon Engineer | ing Thermopla | astic Resin | recommended (80°C [175°F]). | | | Engineering
Thermoplastic
Resin | 10B40
10B40HS1
20B
22C | Mineral-Reinforced
Mineral-Reinforced—Heat Stabilized
Mineral/Glass-Reinforced
Mineral/Glass-Reinforced | Regrind resin must be dried at 80°C (175°F). Time will depend on storage time, particle size and humidity. The following are general | 295–305°C
(560–580°F) | | | 11C40
12T | Intermediate Toughened—
Mineral Reinforced
Toughened—Mineral Reinforced | guidelines: Time in Drying Time** Open Container (at 80°C [175°F]) | 280–300°C
(540–570°F) | | GRZ Glass-Reinf | orced Zytel | | 0–4 hr 2 hr
4–24 hr 4 hr | _ | | General Purpose | 70G13L
70G13HS1L
70G33L
70G33HRL
70G33HS1L
70G43L | 13% Glass—Lubricated 13% Glass—Heat Stabilized, Lubricated 33% Glass—Lubricated 33% Glass—Hydrolysis Resistant, Lubricated 33% Glass—Heat Stabilized, Lubricated 43% Glass—Lubricated | 1–5 days 24 hr >5 days 48 hr Nylon will discolor on drying. The amount of color change depends on temperature and time. Consult Molding Manual on Zytel for more detailed information. | 290–310°C
(550–590°F) | | Improved Surface | 72G13L
72G13HS1L
72G33L
72G33HS1L
72G43L | 13% Glass—Lubricated, 66/6 Copolymer 13% Glass—Heat Stabilized, Lubricated 33% Glass—Lubricated, 66/6 Copolymer 33% Glass—Heat Stabilized, Lubricated 43% Glass—Heat Stabilized, Lubricated | **Dew point –18°C (<0°F) | 270–285°C
(520–545°F) | | Impact Modified | 71G13L
71G13HS1L
71G33L | 13% Glass—Lubricated
13% Glass—Heat Stabilized, Lubricated
33% Glass—Lubricated | | 290–310°C
(550–590°F) | | Toughened | 8018
8018HS
80G33L
80G33HS1L
80G43HS1L | 14% Glass 14% Glass—Heat Stabilized 33% Glass—Lubricated 33% Glass—Heat Stabilized, Lubricated 43% Glass—Heat Stabilized, Lubricated | | 290–310°C
(550–590°F) | | Toughened,
Improved Surface | 82G33L | 33% Glass—Lubricated, 66/6 Copolymer | | 280–305°C
(540–580°F) | | GR 612 Nylon | 77G33L
77G33HS1L
77G43L | 33% Glass—Lubricated
33% Glass—Heat Stabilized, Lubricated
43% Glass—Lubricated | | 280–305°C
(540–580°F) | ^{*}The processing conditions presented here are representative of those typically used or preferred. Rounded numbers are shown for both English and SI units. See your sales representative to obtain maximum part quality on any specific job. Table 2 Flame Retarded Nylon, Minlon Engineering Thermoplastic Resin and Glass-Reinforced Zytel | Resin | | | F | Reciprocation | ng Screw I | Machine* | | | |--|------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------|----------|---|--------------------------------------| | Grade | Туј | oical Cylind | er Temperatı | ıres | Fill | Screw | Back | Injection | | Code | Nozzle | Front | Center | Rear | Speed | Speed | Pressure | Pressure | | Flame Retard | ded Nylon | | | | _ | | | | | FR10 | 220–250°C (430–480°F) | 230–240°C (450–460°F) | 240–245°C
(460–470°F) | 245–250°C (470–480°F) | Fast | Slow | Increasing back
pressure increases
the work done by the | 34–138 MPa (5,000–20,000 psi) | | FR50 | 280–295°C (540–560°F) | 270–275°C
(520–530°F) | 275–280°C
(530–540°F) | 290–300°C (550–570°F) | Fast | Slow | screw on the melt.
This has the | 34–138 MPa (5,000–20,000 psi) | | FR60 | 295–305°C (560–580°F) | 280-290°C
(540-550°F) | 290–295°C
(550–560°F) | 295–300°C (560–570°F) | Fast | Slow | following advantages and disadvantages: | 34–138 MPa (5,000–20,000 psi) | | Minlon Engi | neering Thern | noplastic Resi | n | | 1 | <u> </u> | AdvantagesIncreases melt | | | 10B40
10B40HS1
20B
22C | 295–305°C (560–580°F) | 280–290°C (540–550°F) | 290–295°C
(550–560°F) | 295–300°C
(560–570°F) | Moderate
to Fast | Slow | temperature and uniformity. • Can be used to minimize unmelted particles. | 55–138 MPa (8,000–20,000 psi) | | 11C40
12T | 280–290°C (540–550°F) | 275–280°C (530–540°F) | 275–290°C
(530–550°F) | 280–295°C (540–560°F) | Moderate
to Fast | Slow | Improves color
mixing when color
concentrates are
used. | 55–138 MPa (8,000–20,000 psi) | | GRZ Glass-R | Reinforced Zyt | el | | | | | Disadvantages | | | 70G13L
70G13HS1L
70G33L
70G33HRL | 280–295°C (540–560°F) | 270–275°C (520–530°F) | 275–280°C (530–540°F) | 290–300°C (550–570°F) | Fast | Slow | Decreases output of screw. Increases drool (nozzle). | 34–138 MPa (5,000–20,000 psi) | | 70G33HS1L
70G43L | | | | | | | Reduces glass
fiber length in | | | 72G13L
72G13HS1L
72G33L
72G33HS1L
72G43L | 270–275°C (520–530°F) | 260–265°C (500–510°F) | 260–265°C
(500–510°F) | 270–280°C (520–540°F) | Fast | Slow | glass-reinforced
resins, thus
changing physical
properties
(strength/impact
resistance). | 34–138 MPa (5,000–20,000 psi) | | 71G13L
71G13HS1L
71G33L | 280–295°C (540–560°F) | 270–275°C (520–530°F) | 275–280°C (530–540°F) | 290–300°C (550–570°F) | Fast | Slow | Increases equipment wear with filled resins. | 34–138 MPa (5,000–20,000 psi) | | 8018
8018HS
80G33L
80G33HS1L
80G43HS1L | 275–295°C (530–560°F) | 270–275°C (520–530°F) | 275–280°C
(530–540°F) | 290–300°C (550–570°F) | Fast | Slow | Scrubs barrel
(black specks). Screw retraction time
should be approxi-
mately 80% of the cool
time for optimum | 34–138 MPa (5,000–20,000 psi) | | 82G33L | 280–295°C (540–560°F) | 270–280°C (520–540°F) | 270–280°C
(520–540°F) | 280–295°C (540–560°F) | Fast | Slow | molding. | 34–138 MPa (5,000–20,000 psi) | | 77G33L
77G33HS1L
77G43L | 275–295°C (530–560°F) | 265–270°C (510–520°F) | 270–275°C
(520–530°F) | 280–295°C (540–560°F) | Fast | Slow | | 34–138 MPa (5,000–20,000 psi) | ^{*}The processing conditions presented here are representative of those typically used or preferred. Rounded numbers are shown for both English and SI units. See your sales representative to obtain maximum part quality on any specific job. Table 2 Flame Retarded Nylon, Minlon Engineering Thermoplastic Resin and Glass-Reinforced Zytel | Resin
Grade | Mold Surface | | |--|---------------------------------|--| | Code | Temperature* | Comments | | Flame Retard | ed Nylon | Breathing of fumes should be avoided. Consult Zytel Molding Guide for recommended molding | | FR10 | 40–65°C
(100–150°F) | area ventilation. At higher temperatures and excessively long holdup time, decomposition of the flame-retarded resins may occur, evolving
some hydrogen halides (which are corrosive). See MSDS for | | FR50 | 65–120°C
(150–250°F) | information on these resins. • Shutdown must always be preceded by completely purging the molding machine. | | FR60 | 65–100° C
(150–210°F) | Glass-reinforced nylons and Minlon are abrasive to equipment. Bimetallic barrel liners and screw flight lands of a hard surfacing alloy are recommended. The following processing conditions will aid in minimizing wear: | | Minlon Engin | eering Thermoplastic Resin | use suggested high rear zone cylinder setting | | 10B40 | 65–100°C | use minimum screw speed and back pressure keep check valve in good operating condition | | 10B40HS1
20B
22C | (150–210°F) | The surface appearance of the molded part depends partly on the mold surface temperature. The temperatures shown here will give the best surfaces. It may be necessary to increase the nozzle temperature to prevent freeze-off. | | 11C40 | 65–100°C
(150–210°F) | A fast, one-second injection speed normally gives the highest gloss. | | 12T | (130 210 1) | Consult the molding manual on glass-reinforced Zytel and Minlon for additional details. | | GRZ Glass-Re | inforced Zytel | 1 | | 70G13L
70G13HS1L
70G33L
70G33HRL
70G33HS1L
70G43L | 65–120°C
(150–250°F) | | | 72G13L
72G13HS1L
72G33L
72G33HS1L
72G43L | 65–120°C
(150–250°F) | | | 71G13L
71G13HS1L
71G33L | 65–120°C
(150–250°F) | | | 8018
8018HS
80G33L
80G33HS1L
80G43HS1L | 65–120°C
(150–250°F) | | | 82G33L | 65–120° C
(150–250°F) | | | 77G33L
77G33HS1L
77G43L | 65–120°C
(150–250°F) | | ^{*}The processing conditions presented here are representative of those typically used or preferred. Rounded numbers are shown for both English and SI units. See your sales representative to obtain maximum part quality on any specific job. Table 3 Delrin Acetal Resin and Hytrel Engineering Thermoplastic Resin | | R | esin Grade | Dehumidifying
Dryer Conditions | Melt (Stock) | |---|--|---|--|---------------------------------| | Resin | Code | Description | Time/Temp. | Temperature* | | Delrin Acetal Resi | n* | - | | | | High Viscosity | 100
100P
100F
100AF
107 | High Viscosity
Superior Processing
Fast Cycle
TFE Fiber Filled—Low Friction
UV Stabilized (Delrin 100 Base) | Not Usually Required | 205–225°C
(400–440°F) | | General Purpose | 500
500P
500F
500AF
500CL
507
570
577 | General Purpose Superior Processing Fast Cycle TFE Fiber Filled—Low Friction Chemically Lubricated UV Stablized (Delrin 500 Base) 20% Glass—High Stiffness, Low Warpage Black Weatherable (Delrin 570 Base) | | 205–225°C
(400–440°F) | | Low Viscosity | 900
900P
900F
900HP
1700HP | Low Viscosity—High Flow
Superior Processing
Fast Cycle
High Productivity
Special Purpose High Flow | | 205–225°C
(400–440°F) | | Toughened | 100ST
500T | Super Tough (Delrin 100 Base)
Toughened (Delrin 500 Base) | 2–4 hr at 80°C (175°F) | 195–215°C
(380–420°F) | | Hytrel Engineeri | ing Therr | noplastic Elastomer | | | | Most Flexible Grades and Lowest Melting | G3548VV
4056 | Flexible Grade with Color Stable Antioxidant
Flexible Grade | Hytrel can be used directly from
undamaged sealed bags and may
not need to be dried prior to mold- | 180–205°C
(355–400°F) | | | HTR8122
G4074
G4078W | Most Flexible Grade
Flexible Grade with High Heat Stabilizer
Flexible Grade with Color Stable Antioxidant | ing. As manufactured, these polymers are dried to a moisture content below 0.1% and packaged in special moisture-resistant bags. | 190–220°C
(375–430°F) | | Low to Mid-Range
Flexural Modulus | 4069
4556
5526
5556
5555HS | Flexible Grade, High Performance
Mid-Range Flexiblity With High Performance
Mid-Range Flexiblity With High Performance
Mid-Range Flexiblity With High Performance
Mid-Range Grade with High Heat Stabilizer | However, since there is a possibil- ity of damaged or open bags, and in any case when using regrind, a desiccant hopper dryer should be used to ensure moldings of high quality. This will also protect against moisture pickup during | 220–250°C
(430–480°F) | | Mid-Range Flexibility | G4774
G5544
6356 | Mid-Range Grade with High Heat Stabilizer
Mid-Range Grade with High Heat Stabilizer
Mid-Range with High Performance | processing. Dehumidified hopper
dryers reduce and control the resin
moisture content and improve
quality. | 230–260°C
(445–500°F) | | High Strength and
Stiffness | 7246
8238 | High Modulus, High Strength, High Performance
High Modulus, High Strength, High Performance | Drying Conditions for Hytrel Drying Drying Temperature Time | 240–260°C
(465–500°F) | | Special Grades | HTR6108
HTR8068 | Mid-Range with Low Permeability to Fuels and
Oils
Flame Retardant Grade, UL-94V-0 | Dehumidified 110°C 2-3 hr hopper (230°F) Dehumidified 80°C overnight hopper (175°F) Air circulating 110°C 4-6 hr oven (230°F) (in dry weather) | 205°C
(400°F) | ^{*}Grades in bold type are also available in Delrin II. ^{**}The processing conditions presented here are representative of those typically used or preferred. Rounded numbers are shown for both English and SI units. See your sales representative to obtain maximum part quality on any specific job. Table 3 Delrin Acetal Resin and Hytrel Engineering Thermoplastic Resin | Resin | | | | Machine* | | | | |-----------------------------------|---------------------------|---------------------------|---------------------------|------------------------------|---------------------|---------------------|---| | Grade | | | er Temperat | | Fill | Screw | Back | | Code | Nozzle | Front | Center | Rear | Speed | Speed | Pressure | | Delrin Ace | etal Resin* | | | | | , | | | 100
100P
100F | 210° C
(410° F) | 205° C
(400° F) | 205°C
(400°F) | 205°C (400°F) | Moderate
to Fast | Slow | Increasing back pressure increases the work done by the screw on the melt. | | 100AF
107 | | | | | | | This has the following advantages and disadvantages: | | F00 | 20502 | 00000 | 00000 | 2000 | | 01 . | Advantages | | 500
500P
500F | 205°C
(400°F) | 200°C
(390°F) | 200°C
(390°F) | 200°C
(390°F) | Moderate
to Fast | Slow to
Moderate | Increases melt temperature and uniformity. | | 500AF
500CL | | | | | | | Can be used to minimize unmelted particles. | | 507
570 | | | | | | | Improves color mixing when color concentrates are used. | | 577 | | | | | | | Disadvantages | | 900 | 205° C | 200° C | 200° C | 200° C | Moderate | Slow to | Decreases output of screw. | | 900P | (400°F) | (390°F) | (390°F) | (390°F) | to Fast | Moderate | Increases drool (nozzle). | | 900F
900HP
1700HP | | | | | | | Reduces glass fiber length in glass-
reinforced resins, thus changing physical
properties (strength/impact resistance). | | | | | | | | | Increases equipment wear with filled | | 100ST
500T | 195°C
(380°F) | 190°C
(370°F) | 190°C
(370°F) | 190°C
(370°F) | Moderate
to Fast | Slow to
Moderate | resins. | | | gineering ⁻ | | | <u> </u> | 10 1 401 | Moderate | Scrubs barrel (black specks). | | G3548W | | <u> </u> | | | Madausta | Madausta | Increasing back pressure increases the work | | 4056 | 175°C
(345°F) | 190°C
(375°F) | 190°C
(375°F) | 165–190°C (330–375°F) | Moderate | Moderate | done by the screw on the melt. | | HTR8122
G4074 | 190°C (375°F) | 205°C (400°F) | 205°C
(400°F) | 180–205°C (355–400°F) | Moderate | Moderate | This has the following advantages and disadvantages: | | G4078W | (6.6.1) | (100 17 | (100 1) | (666 166 17 | | | Advantages | | 4069 | 220°C | 230° C | 230° C | 205–230°C | Moderate | Moderate | Increases melt temperature and uniformity. | | 4556
5526 | (430°F) | (455°F) | (455°F) | (400–455°F) | | | Can be used to minimize unmelted particles. | | 5556
5555HS | | | | | | | Improves color mixing when color concentrates are used. | | G4774 | 230° C | 245° C | 245° C | 220-245°C | Moderate | Moderate | May be required for better mixing with any
of the five Hytrel concentrates with | | G5544
6356 | (455°F) | (475°F) | (475°F) | (430–475°F) | | | special additives. | | 7040 | 0.555 | 04500 | 0 | 000 0000 | | | Disadvantages | | 7246
8238 | 240°C
(465°F) | 245°C
(475°F) | 245° C
(475° F) | 220–245°C (430–475°F) | Moderate
to Fast | Moderate | Decreases output of screw. Increases drool (nozzle). | | - | | | | | | | Scrubs barrel (black specks). | | HTR6108
HTR8068 | 190°C
(375°F) | 205°C
(400°F) | 205°C
(400°F) | 180–205°C (355–400°F) | Moderate | Moderate | - Scrubs barrer (black specks). | ^{*}Grades in bold type are also available in Delrin II. ^{**}The processing conditions presented here are representative of those
typically used or preferred. Rounded numbers are shown for both English and SI units. See your sales representative to obtain maximum part quality on any specific job. Table 3 Delrin Acetal Resin and Hytrel Engineering Thermoplastic Resin | Resin
Grade
Code | Injection
Pressure | Mold Surface
Temperature** | Comments | |---|--|--------------------------------|--| | Delrin Aceta | | remperature | Comments | | 100
100P
100F
100AF
107 | 69–110 MPa
(10,000–16,000 psi) | 80–105°C
(180–220°F) | PRECAUTIONS: Delrin has good thermal stability for normal processing, but degradation can occur under improper processing conditions, such as: Combination of excessive hold-up times and/or high melt temperatures. | | 500
500P
500F
500AF
500CL
507
570 | 62–104 MPa
(9,000–15,000 psi) | 80–105°C
(180–220°F) | Contaminants and impurities from acid-generating resins such as PVC, flame retardant resins, etc. Contact of the melt with copper, copper alloys or thread lubricants containing copper. Please refer to Molding Manual on Delrin for details and safety instructions. Delrin does not need to be dried usually. However, it can be dried | | 900
900P
900F
900HP
1700HP | 48–69 MPa
(7,000–10,000 psi) | 80–105°C
(180–220°F) | at 85°C (185°F) for 4 hours or less in an oven or hopper dryer, with dehumidified recirculating air systems for optimum molding. Corrosion resistant molds recommended for Delrin AF. Purge with clear polystyrene (only) before and after running toughened Delrin composition. The minimum purge is ten times the barrel capacity. | | 100ST
500T | 62–110 MPa
(9,000–16,000 psi) | 10–70°C
(50–160°F) | Improved Delrin II P resins have greater thermal stability for low mold and screw deposits. | | Hytrel Eng | ineering Thermoplastic | Elastomer | <u> </u> | | G3548W
4056 | 21–100 MPa
(3,000–14,500 psi) | 25–45° C
(75–115°F) | When handled properly, Hytrel has outstanding thermal stability. In the melt under normal operating conditions (e.g., recommended melt temperatures and <0.1% moisture | | HTR8122
G4074 | 21–100 MPa
(3,000–14,500 psi) | 25–45° C
(75–115°F) | content), the evolution of gaseous by-products is minimal for most grades. | | 4069
4556
5526
5556
5555HS | 34–138 MPa
(5,000–20,000 psi) | 25–75° C
(75–165°F) | Regrind can be used up to a level of 25% or more, without a significant drop in mechanical properties, providing the quality of the regrind is good. This can be checked with measurements of Melt Flow Rate relative to a control of resin out of the bag. Further details can be found in the "Rheology and Handling Guide" for Hytrel. All regrind must be dried before processing. | | G4774
G5544
6356 | 34–141 MPa
(5,000–19,000 psi) | 25–75° C
(75–165°F) | General-purpose screws with a gradual transition zone are recommended. Screw compression ratio should be between 2.5 and 3.5 to 1. Since Hytrel is relatively soft and flexible, some difficulties in | | 7246
8238 | 62–138 MPa
(9,000–20,000 psi) | 25–75° C
(75–165°F) | part ejection may be experienced with the very soft grades less than 45D. Large knockout pins may be used and ample draft on cores. To reduce possible sticking problems, a matted surface finish on molds is preferred with the softer grades. | | HTR6108
HTR8068 | 21–100 MPa
(3,000–14,500 psi) | 25–45° C
(75–115°F) | Consult the "Injection Molding Guide" for Hytrel for additional details. | ^{*}Grades in bold type are also available in Delrin II. ^{**}The processing conditions presented here are representative of those typically used or preferred. Rounded numbers are shown for both English and SI units. See your sales representative to obtain maximum part quality on any specific job. Table 4 Rynite PET and Rynite PBT Thermoplastic Polyester Resin | | | Resin Grade | Dehumidifying | | |--------------------------------------|--|---|--|-----------------------------------| | Resin | Code | Description | Dryer Conditions
Time/Temp. | Melt (Stock) Temperature* | | Rynite PET Th | ermoplast | tic Polyester Resin | | | | General Purpose | 530
545
555 | 30% Glass-Reinforced
45% Glass-Reinforced
55% Glass-Reinforced,
Highest Stiffness | Hopper Dryer Required Air Temperature: 120–135°C (250–275°F) 105°C (225°F) overnight | 280–300° C
(540–570° F) | | | 408 | 30% Glass-Reinforced,
Improved Toughness | Dew Point:
-18°C (0°F) or lower | 270–290° C
(520–550° F) | | Low Warp | 935
940 | 35% Mica/Glass-Reinforced
40% Mica/Glass-Reinforced | Air Flow Rate: 0.8—1.0 CFM per lb/hr of resin processed Drying Time: | 280–300°C
(540–570°F) | | Flame Retarded | FR515
FR530
FR543
FR943
FR945
FR946 | Flame Retarded—15% Glass-Reinforced
Flame Retarded—30% Glass-Reinforced
Flame Retarded—43% Glass-Reinforced
Flame Retarded—43% Glass/Glass Flake
Flame Retarded—45% Glass/Mineral
Flame Retarded—46% Glass/Glass Flake | Virgin resin 2–3 hr
Recycled regrind 3–4 hr
Wet resin (See Drying Manual) | 270–290°C
(520–550°F) | | Super Toughened | SST35 | Stiffened, Super Tough,
35% Glass-Reinforced | | 270–290°C (520–550°F) | | Toughened | 415HP | Toughened, 15% Glass-Reinforced | | 270–290°C
(520–550°F) | | Rynite PBT Th | ermoplas [.] | tic Polyester Resin | | | | -
Unreinforced | 6125 | Heat Stabilized | | 250–260°C
(480–500°F) | | Toughened | 6400 | Super Tough | | 250–260°C
(480–500°F) | | Flame Retardant | FR6944 | Flame Retarded—UL94 V-0 | | 250–260° C (480–500° F) | | Glass Reinforced | 7015
7030 | 15% Glass Reinforced
30% Glass Reinforced | | 250–260°C
(480–500°F) | | Glass Reinforced,
Flame Retardant | FR7915
FR7930
FR7930F | 15% Glass Reinforced, Flame
Retardant
30% Glass Reinforced, Flame
Retardant
30% Glass Reinforced, High Flow,
Flame Retardant | | 250–260°C
(480–500°F) | ^{*}The processing conditions presented here are representative of those typically used or preferred. Rounded numbers are shown for both English and SI units. See your sales representative to obtain maximum part quality on any specific job. Table 4 Rynite PET and Rynite PBT Thermoplastic Polyester Resin | Resin | | | | | | |--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------| | Grade | | | | | | | Code | Nozzle | Front | Center | Rear | Fill Speed | | Rynite PET | Thermoplastic Poly | ester Resin | | | | | 530
545
555 | 275–300°C
(530–570°F) | 265–295°C
(510–560°F) | 260–295°C
(500–560°F) | 260–290°C
(500–550°F) | Moderate
to Fast | | 408 | 260–295°C
(500–560°F) | 260–280°C
(500–540°F) | 260–280°C (500–540°F) | 260–275°C (500–530°F) | Moderate
to Fast | | 935
940 | 275–300°C
(530–570°F) | 265–295°C
(510–560°F) | 260–295°C
(500–560°F) | 260–290°C
(500–550°F) | Moderate
to Fast | | FR515
FR530
FR543
FR943
FR945
FR946 | 260–295°C
(500–560°F) | 260–280°C
(500–540°F) | 260–280°C
(500–540°F) | 260–275°C
(500–530°F) | Moderate
to Fast | | SST35 | 260–295°C
(500–560°F) | 260–280°C
(500–540°F) | 260–280°C
(500–540°F) | 260–275°C
(500–530°F) | Moderate
to Fast | | 415HP | 260–295°C
(500–560°F) | 260–280°C
(500–540°F) | 260–280°C
(500–540°F) | 260–275°C
(500–530°F) | Moderate
to Fast | | Rynite PBT
6125 | Thermoplastic Poly | vester Resin
240–260°C | 240–260°C | 230–250°C | Moderate | | | (460–500°F) | (460–500°F) | (460–500°F) | (450–480°F) | to Fast | | 6400 | 240–260°C
(460–500°F) | 240–260°C
(460–500°F) | 240–260°C
(460–500°F) | 230–250°C
(450–480°F) | Moderate
to Fast | | FR6944 | 240–260°C
(460–500°F) | 240–260°C
(460–500°F) | 240–260°C
(460–500°F) | 230–250°C
(450–480°F) | Moderate
to Fast | | 7015
7030 | 240–260°C
(460–500°F) | 240–260°C
(460–500°F) | 240–260°C
(460–500°F) | 230–250°C
(450–480°F) | Moderate
to Fast | | FR7915
FR7930
FR7930F | 240–260°C
(460–500°F) | 240–260°C
(460–500°F) | 240–260°C
(460–500°F) | 230–250°C
(450–480°F) | Moderate
to Fast | ^{*}The processing conditions presented here are representative of those typically used or preferred. Rounded numbers are shown for both English and SI units. See your sales representative to obtain maximum part quality on any specific job. Table 4 Rynite PET and Rynite PBT Thermoplastic Polyester Resin | Resin
Grade | | Reciprocating Screw Machine* | |
--|----------------|---|--| | Code | Screw
Speed | Back Pressure | Injection Pressure | | Rynite PET | Thermoplastic | Polyester Resin | | | 530
545
555 | Slow | Increasing back pressure increases the work done by the screw on the melt. This has the following advantages and disadvantages: | 34–124 MPa
(5,000–18,000 psi) | | 408 | Slow | Advantages Increases melt temperature and uniformity. Can be used to minimize unmelted particles. | 34–124 MPa
(5,000–18,000 psi) | | 935
940 | Slow | Improves color mixing when color concentrates are used. Display Provided Pro | 34–124 MPa
(5,000–18,000 psi) | | FR515
FR530
FR543
FR943
FR945
FR946 | Slow | Disadvantages Decreases output of screw. Increases drool (nozzle). Reduces glass fiber length in glass-reinforced resins, thus changing physical properties (strength/impact resistance). Increases equipment wear with filled resins. | 34–124 MPa
(5,000–18,000 psi) | | SST35 | Slow | Scrubs barrel (black specks). Screw retraction time should be approximately 80% of the cool time for optimum molding. | 55–124 MPa
(8,000–18,000 psi) | | 415HP | Slow | are coordinate for opamain morality. | 55–124 MPa
(8,000–18,000 psi) | | Rynite PBT | Thermoplastic | Polyester Resin | | | 6125 | Slow | | 55–95 MPa (8,000–14,000 psi) | | 6400 | Slow | | 69–124 MPa
(10,000–18,000 psi) | | FR6944 | Slow | | 55–95 MPa
(8,000–14,000 psi) | | 7015
7030 | Slow | | 55–95 MPa (8,000–14,000 psi) | | FR7915
FR7930 | Slow | | 55–95 MPa
(8,000–14,000 psi) | | FR7930F | | | | ^{*}The processing conditions presented here are representative of those typically used or preferred. Rounded numbers are shown for both English and SI units. See your sales representative to obtain maximum part quality on any specific job. ### Table 4 Rynite PET and Rynite PBT Thermoplastic Polyester Resin | Resin
Grade
Code | Mold Surface
Temperature* | Comments | |--|--|--| | Rynite PE | T Thermoplastic Polyeste | r Resin | | 530
545
555 | Part Minimum Thickness Temperature 0.75 mm 110°C (0.03 in) (230°F) | excessive moisture, there will be no evidence on the surfaces of parts—they will just be brittle. | | 408 | 1.5 mm 105°C
(0.06 in) (220°F)
3.1 mm 100°C | High surface gloss can be obtained if the mold surface temperature is 93°C (200°F) or hotter. This hot mold will also give optimum long-term dimensional stability. To reduce wear, bimetallic barrel liners and screw flight lands of a hard surfacing alloy are | | 935 | (0.12 in) (210°F)
6.3 mm 90°C | recommended. | | 940 | (0.25 in) (190°F) | Consult molding guide on Rynite for additional details. | | FR515
FR530
FR543
FR943
FR945
FR946 | | Screw compression ratios are a compromise between melt temperature uniformity and glass fiber length. A range of 3.0–3.5 has been found to be best. | | SST35 | Part Minimum
Thickness Temperature | | | 415HP | 0.75 mm 95°C (0.03 in) (205°F) 1.5 mm 90°C (0.06 in) (195°F) 3.1 mm 85°C (0.12 in) (185°F) 6.3 mm 75°C (0.25 in) (165°F) | | | Rvnite PB | T Thermoplastic Polyeste | r Resin | | 6125 | 30–65°C
(90–150°F) | | | 6400 | 30–65°C
(90–150°F) | | | FR6944 | 30–65°C
(90–150°F) | | | 7015
7030 | 30–65° C
(90–150°F) | | | FR7915 | 30–65° C | | | FR7930 | (90–150°F) | | | FR7930F | | | ^{*}The processing conditions presented here are representative of those typically used or preferred. Rounded numbers are shown for both English and SI units. See your sales representative to obtain maximum part quality on any specific job. ### Table 5 DuPont Liquid Crystal Polymer | | | Resin Grade | Dehumidifying
Dryer Conditions | Melt | |--|--|--|--|-----------------------------------| | Resin | Code | Description | Ťime/Temp. | Temperature* | | General Purpose
Amorphous | HX1000 Neat Resin
HX1130 30% Glass
HX1330 30% Talc | | Hopper Dryer Required Air Temperature: 120–150°C (250–300°F) | 330–340°C
(625–645°F) | | High Temperature
Crystalline | HX4000
HX4100
HX4200
HX4330 | Neat Resin
30% Glass
50% Glass
30% Talc | Dew Point: -18°C (0°F) or lower Air Flow Rate: 0.8–1.0 CFM per lb/hr of resin processed | 340–355°C
(640–670°F) | | High Toughness
Crystalline | HX6000
HX6130
HX6150
HX6330 | Neat Resin
30% Glass
50% Glass
30% Talc | Drying Time:
Virgin resin 2–3 hr
Recycled regrind 3–4 hr | 345–360° C
(650–680° F) | | Tough/High
Temperature
Crystalline | HX7000
HX7130
HX7150
HX7330 | Neat Resin
30% Glass
50% Glass
30% Talc | | 355–380°C
(670–720°F) | ^{*}The processing conditions presented here are representative of those typically used or preferred. Rounded numbers are shown for both English and SI units. See your sales representative to obtain maximum part quality on any specific job. ### Table 5 DuPont Liquid Crystal Polymer | | Reciprocating Screw Machine* | | | | | | | | |--------------------------------------|-------------------------------|--------------------------|--------------------------|--------------------------|-----------------------|-------------------------------------|--|--| | Resin Grade | Typical Cylinder Temperatures | | | Fill Screw | | Back | | | | Code | Nozzle | Front | Center | Rear | Speed | Speed | Pressure | | | HX1000
HX1130
HX1330 | 340°C
(640°F) | 335°C
(635°F) | 330° C
(630°F) | 325° C
(620°F) | Very Fast
(<1 sec) | Slow
(<0.4 m/sec
[16 in/sec]) | Low 0-0.69 MPa (0-100 psi) Increasing back pressure increases the work done by the | | | HX4000
HX4100
HX4200
HX4330 | 340° C
(645°F) | 340° C
(640°F) | 335°C
(635°F) | 330° C
(625°F) | Very Fast
(<1 sec) | Slow
(<0.4 m/sec
[16 in/sec]) | screw on the melt. This has the following advantages and disadvantages: | | | HX6000
HX6130
HX6150
HX6330 | 345°C (650°F) | 340° C
(645°F) | 340° C
(640°F) | 335° C
(635°F) | Very Fast
(<1 sec) | Slow
(<0.4 m/sec
[16 in/sec]) | Advantages Increases melt temperature and uniformity. Minimizes unmelted particles. | | | HX7000
HX7130
HX7150
HX7330 | 355° C (670°F) | 350°C
(665°F) | 345°C
(655°F) | 345° C
(655°F) | Very Fast
(<1 sec) | Slow
(<0.4 m/sec
[16 in/sec]) | Improves color mixing when color concentrates are used. Disadvantages Decreases output of screw. | | | | | | | | | | Increases drool (nozzle). Reduces glass fiber length in glass-reinforced resins, thus changing physical properties. Increases equipment wear | | | | | | | | | | with filled resins. •
Scrubs barrel (black specks). | | | | | | | | | | | | ^{*}The processing conditions presented here are representative of those typically used or preferred. Rounded numbers are shown for both English and SI units. See your sales representative to obtain maximum part quality on any specific job. ### Table 5 DuPont Liquid Crystal Polymer | | R | eciprocating Screw M | | | |---|--------------------------------------|---|--------------------------------|--| | Resin Grade
Code | Pressure
Injection | Holding (Packing)
Pressure | Mold Surface
Temperature* | Comments | | HX1000
HX1130
HX1330 | 40–125 MPa (6,000–18,000 psi) | 30–100 MPa
(4,500–14,500 psi) | 80–120°C
(180–250°F) | Drying is critical, to prevent resin
degradation. Moisture content must be
less than 0.010%. If degradation should
occur because of excessive moisture, | | HX4000
HX4100
HX4200
HX4330 | 30–125 MPa (4,500–18,000 psi) | 30–100 MPa
(4,500–14,500 psi) | 80–120°C
(180–250°F) | there will be no evidence on the surfaces of parts. Being a shear-sensitive resin, high fill rates are required to obtain a low melt viscosity for easy filling of long thin wall | | HX6000
HX6130
HX6150
HX6330 | 30–125 MPa (4,500–18,000 psi) | 30–100 MPa
(4,500–14,500 psi) | 80–120°C
(180–250°F) | sections. This also contributes to the anisotropic properties—including high physical properties, low thermal expansion and low mold shrinkage in the flow direction. | | HX7000
HX7130
HX7150 | 30–125 MPa (4,500–18,000 psi) | 30–100 MPa
(4,500–14,500 psi) | 80–120°C
(180–250°F) | Gate locations should be chosen to
avoid weld lines in critical areas.
Multiple gates are generally not
recommended. | | HX7330
——————————————————————————————————— | | | | Zenite has excellent thermal stability. In
order to minimize any possible effect of
glass breakage, it is recommended that
regrind be limited initially to 25%. | | | | | | It is not necessary to purge with another
resin if Zenite is to be molded upon
reheating. When switching to or from
another resin, purge with low melt index
high-density polyethylene. This should
be a continuous purging whenever
barrel temperatures exceed 315°C
(600°F). | | | | | | General purpose screws are recommended to reduce glass fiber breakage. To reduce wear, bimetallic barrel liners and screw flight lands of a hard surfacing alloy are recommended. | ^{*}The processing conditions presented here are representative of those typically used or preferred. Rounded numbers are shown for both English and SI units. See your sales representative to obtain maximum part quality on any specific job. ### **Typical Extrusion Conditions** for Zytel, Delrin, and Hytrel ### Table 6 Zytel, Delrin, Hytrel | | | Resin Grade | Dehumidifying
Dryer Conditions | | | | |---|--|--|--|--|--|--| | Resin Code Description | | Description | Time/Temp. | | | | | Zytel Nylon Resir | 1 | | | | | | | 66 Nylon | 42
45HSB | High Viscosity
Heat Stabilized 42—Lubricated | Zytel must be dry prior to processing. Virgin resin is packaged dry in moisture-proof boxes and bags. Predrying may not be necessary in noncritical applications. Drying in dehumidified hopper driers is recommended (80°C [175°F] for 2 hr). Regrind or material from opened | | | | | 612 Nylon | 153HSL
158L
159L | Heat Stabilized—Lubricated
General Purpose
High Viscosity | | | | | | | 350PHS Super Tough—Plasticized—Heat Stabilized 351PHS Highly Plasticized—Heat Stabilized | | bags will require longer times. Consult the Zytel Molding Manual for more detailed | | | | | 6 Nylon | ST811HS | Flexible—Heat Stabilized | information. | | | | | Modified
Copolymers | 91AHS | Heat Stabilized—Lubricated | | | | | | Delrin Acetal Res | sin | | | | | | | High Viscosity II150SA 100ST | | High Viscosity
Toughened | Delrin does not usually require drying before processing.
However, Delrin 100ST must be dried (2–4 hr at 80°C | | | | | General Purpose | II550SA | General Purpose | - [175°F]). | | | | | Hytrel Engineerin | g Thermoplas | stic Elastomer | | | | | | Most Flexible
Grades and
Lowest Melting | G3548W
4056 | Flexible Grade with Color Stable Antioxidant Flexible Grade | Hytrel must be dry prior to extrusion. Virgin resin is packaged in moisture-proof bags. To ensure dryness, resin should be dried in dehumidifying driers a minimum of 2 hr at 105°C (220°F). Consult "Rheology and Handling" bulletin on Hytrel for more information. | | | | | 20Woot Molaing | HTR8122
G4074
G4078W | Most Flexible Grade
Flexible Grade with High Heat Stabilizer
Flexible Grade with Color Stable Antioxidant | | | | | | Low to Mid-Range
Flexural Modulus | 4069
4556 | Flexible Grade, High Performance
Mid-Range Flexibility with High Performance | | | | | | | 5556
5555HS | Mid-Range Flexibility with High Performance
Mid-Range Grade with High Heat Stabilizer | | | | | | Mid-Range
Flexibility | G4774
G5544
6356 | Mid-Range Grade with High Heat Stabilizer
Mid-Range Grade with High Heat Stabilizer
Mid-Range with High Performance | | | | | | High Strength and Stiffness | 7246
8238 | High Modulus, High Strength and Performance
High Modulus, High Strength and Performance | | | | | | Special Grades | HTR6108 | Mid-Range with Low Permeability to Fuels and Oils | | | | | | | HTR8139LV | Mid-Range Flexibility with Excellent Flex Fatigue
Resistance | | | | | | High Viscosity
Grades | HTR5612
HTR5612 BK
HTR4275
HTR4275 BK | Mid-Range Grade with High Heat Stabilizer
Mid-Range Grade with High Heat Stabilizer
Mid-Range Grade with High Heat Stabilizer
Mid-Range Grade with High Heat Stabilizer | | | | | | | HTR8177 | High Modulus, High Strength | | | | | ^{*}The processing conditions presented here are representative of those typically used or preferred. Rounded numbers are shown for both English and SI units. See your sales representative to obtain maximum part quality on any specific job. ## **Typical Extrusion Conditions for Zytel, Delrin, and Hytrel** ### Table 6 Zytel, Delrin, Hytrel | | Typical Extruder Temperatures* | | | | | | | | |--|---|--|--|--|--|--|---|--| | Rear | Center
Rear | Center
Front | Front | Head | Die | Melt | Comments | | | ytel Nylo | n Resin | | | _ | | | | | | 290°C | 280°C | 280°C | 275°C | 275°C | 275°C | 290°C | Zytel, Hytrel and Delrin tubing may be sized | | | (550°F) | (540°F) | (540°F) | (530°F) | (530°F) | (530°F) | (550°F) | using common commercial methods employed with other resins. | | | 240°C | 240°C | 230°C | 230°C | 230°C | 230°C | 230°C | An extruder with an L/D ratio of at least 24 | | | (460°F) | (460°F) | (450°F) | (450°F) | (450°F) | (450°F) | (450°F) | is recommended. It is recommended that the barrel be equipped with at least four heat control | | | 230°C | 225°C | 220°C | 220°C | 220°C | 220°C | 220°C | zones. | | | (450°F) | (440°F) | (430°F) | (430°F) | (430°F) | (430°F) | (430°F) | Do not use undercut feed throats. | | | 240°C | 240°C | 230°C | 230°C | 230°C | 230°C | 230°C | Properly designed single-stage metering | | | (460°F) | (460°F) | (450°F) | (450°F) | (450°F) | (450°F) | (450°F) | screws are adequate. For high output a | | | 240°C | 240°C | 230°C | 230°C | 230°C | 230°C | 230°C | barrier screw is preferred. A breaker plate of streamlined design is | | | (460°F) | (460°F) | (450°F) | (450°F) | (450°F) | (450°F) | (450°F) | suggested for supporting a screen pack of | | | , , | | (+30 1 / | (430 1) | (430 1 / | (430 1 / | (430 1) | two 60 mesh and two 80 mesh screens. | | | | tal Resin | | | | | | The extruder head and adaptor must be streamlined. | | | 205°C
(400°F) | 205°C | 200°C | 200°C | 200°C | 205°C | 210°C | The die and mandrel design for a vacuum | | | (400°F) | (400°F) | (390°F) | (390°F) | (390°F) | (400°F) | (410°F) | sizing process should have: 1. A ratio of die I.D./sizing plate I.D. of at | | | | | | | | | | least 2/1 for small diameter tubing. | | | lytrel Eng | ineering The | rmoplastic El | astomer | | | 1 | The annulus opening should be appromately twice the tube wall thickness. | | | 180°C A minimum straight land length of 35 i | | | (355°F) is recommended for both the mandrel and die at the exit. | | | (000 . / | (000 . / | (666.7 | (000 1) |
(000 1) | (666.7) | (000 . / | Use a drawdown ratio of 4/1 to 10/1 for free | | | | | | | | | | extrusion. (The drawdown ratio is the cross | | | 195°C
(385°F) | 195°C | 195°C | 195°C
(385°F) | 195°C | 195°C | 195°C | sectional area of the die annulus divided by t | | | (303°F) | (385°F) | (385°F) | (305-F) | (385°F) | (385°F) | (385°F) | cross sectional area of the tube.) | | | 220°C | | | (430°F) | | | 225°C 1 | | | (435°F) | | | 230°C 1 | | | (445°F) | | | | | | | | | | _ | | | 240°C | 24000 | 240°C | 2/10°C | 24000 | 24000 | 2/1000 | | | | 240°C (465°F) | 240°C
(465°F) | 240°C (465°F) | 240°C
(465°F) | 240°C
(465°F) | 240°C
(465°F) | 240°C
(465°F) | | | | (465°F) | | | (465°F)
195°C | (465°F)
195°C | (465°F) | (465°F)
195°C | (465°F) | (465°F) | (465°F)
195°C | | | | (465°F) | | | (465°F)
195°C
(385°F)
220°C | (465°F) 195°C (385°F) 220°C | (465°F)
195°C
(385°F)
220°C | | | | (465°F)
195°C
(385°F) | | | (465°F) 195°C (385°F) 220°C (430°F) | (465°F)
195°C
(385°F)
220°C
(430°F) | (465°F) 195°C (385°F) 220°C (430°F) | | | | (465°F)
195°C
(385°F)
220°C | (465°F) 195°C (385°F) 220°C | (465°F)
195°C
(385°F)
220°C | | | | (465°F) 195°C (385°F) 220°C (430°F) 225°C | | ## Start with DuPont ### For more information on Engineering Polymers: (302) 999-4592 ### For Automotive Inquiries: (800) 533-1313 ### U.S.A. EAST DuPont Engineering Polymers Chestnut Run Plaza 713 P.O. Box 80713 Wilmington, DE 19880-0713 (302) 999-4592 #### **MIDWEST** DuPont Engineering Polymers 100 Corporate North Suite 200 Bannockburn, IL 60015 (708) 735-2720 DuPont Engineering Polymers Automotive Products 950 Stephenson Highway Troy, MI 48007-7013 (313) 583-8000 #### **WEST** DuPont Engineering Polymers 18500 Von Karman Avenue Suite 750, P.O. Box 19732 Irvine, CA 92715 (714) 263-6233 #### Canada DuPont Canada, Inc. DuPont Engineering Polymers P.O. Box 2200 Streetsville, Mississauga Ontario, Canada L5M 2H3 (905) 821-5953 #### Europe DuPont de Nemours Int'l S.A. 2, chemin du Pavillon P.O. Box 50 CH-1218 Le Grand-Saconnex Geneva, Switzerland Telephone: ##41 22 7175111 Telefax: ##41 22 7175200 #### Asia Pacific DuPont Asia Pacific Ltd. P.O. Box TST 98851 Tsim Sha Tsui Kowloon, Hong Kong 852-3-734-5345 #### Latin America DuPont S.A. de C.V. Homero 206 Col. Chapultepec Morales 11570 Mexico D.F. (011 525) 250-8000 #### Japan DuPont Kabushiki Kaisha Arco Tower 8-1, Shimomeguro 1-chome Meguro-ku, Tokyo 153 Japan (011) 81-3-5434-6100 The data listed here fall within the normal range of properties but they should not be used to establish specification limits nor used alone as the basis of design. The DuPont Company assumes no obligations or liability for any advice furnished or for any results obtained with respect to this information. All such advice is given and accepted at the buyer's risk. The disclosure of information herein is not a license to operate under, or a recommendation to infringe, any patent of DuPont or others. DuPont warrants that the use or sale of any material which is described herein and is offered for sale by DuPont does not infringe any patent covering the material itself, but does not warrant against infringement by reason of the use thereof in combination with other materials or in the operation of any process. **CAUTION:** Do not use in medical applications involving permanent implantation in the human body. For other medical applications, see "DuPont Medical Caution Statement," H-50102.